Принцип работы двигателя внутреннего сгорания

Принцип работы двигателя внутреннего сгорания. Какие процессы происходят в цилиндрах

Цикл работы двигателя замкнутый. Возможна организация работы ДВС с кривошипно-шатунным механизмом по двух и четырехтактному циклу. Но подавляющее большинство автомобильных двигателей внутреннего сгорания работает по четырехтактному циклу. Рассмотрим, каким образом происходит эта работа.

Но для начала немного терминологии

Коленчатый вал вращается. Соединенный с ним поршень совершает в цилиндре движение вверх — вниз. Крайние положения поршня в цилиндре называют мёртвыми точками. Это верхняя мёртвая точка (сокращенно ВМТ) и нижняя мёртвая точка (НМТ).

Перемещение поршня от одного крайнего положения до другого называется тактом. Следовательно у четырехтактного двигателя цикл работы выполняется за четыре движения поршня вверх-вниз, что соответствует двум оборотам коленчатого вала.

Если умножить площадь торца (днища) поршня на расстояние между ВМТ и НМТ получим, так называемый, рабочий объем цилиндра, обозначаемый Vh.

Если умножить рабочий объем цилиндра на количество цилиндров в двигателе получается тот самый рабочий объем двигателя. Эта цифра в литрах всегда фигурирует среди технических параметров автомобиля. Многие автопроизводители гордо выносят эту цифру на шильдик, располагая его на задней части автомобиля (часто цифру привирают).

Цифра указывающая на рабочий объем двигателя

Объем над поршнем, когда он замер в ВМТ, называют объемом камеры сгорания (Vс). Именно в этом объеме начинается горение смеси паров топлива и воздуха. Сумма объема камеры сгорания и рабочего объема цилиндра называется полным объемом цилиндра :Va = Vh + Vс.

Следующий важный параметр двигателя, это геометрическая степень сжатия. Обозначается ε. Она показывает, во сколько раз изменяется объем над поршнем, когда он перемещается от НМТ к ВМТ, ε = Va/Vc. Чем больше ε, тем выше температура и давление в смеси газов над поршнем при приближении его к ВМТ. Повышение степени сжатия делает двигатель экономичнее и увеличивает его мощность.

Но величина ε зависит от топлива, на которое рассчитан двигатель. Для двигателя, работающего на бензине ε = 6 – 10, для газовых ε = 7 – 9, для дизельных ε = 15 – 20. Отсюда видно, почему бензиновый двигатель легко переоборудовать для работы на газе. У дизелей такое высокое значение ε необходимо для того, чтобы обеспечить самовоспламенение топлива.

Ну а теперь непосредственно о рабочем цикле

Первый такт цикла носит название «впуск». Поршень движется от ВМТ к НМТ. Впускной клапан открыт, и через него в цилиндр поступают пары бензина смешанные с воздухом, так называемая горючая смесь (у дизельного двигателя – чистый воздух).

Второй такт – сжатие. Клапаны закрыты. Поршень движется от НМТ к ВМТ, рабочая смесь (горючая смесь и остатки продуктов горения от предыдущего цикла) сжимается. Когда поршень приближается в ВМТ, у бензиновых двигателей между контактами свечи зажигания проскакивает электрическая искра для поджигания смеси.

Почему искра подается не в ВМТ, а раньше?

Дело в том, что перед началом горения должны пройти реакции, подготавливающие смесь к горению. Интенсивное горение смеси должно начаться только когда поршень достигнет ВМТ. Время на подготовительные реакции всегда одинаковое, а скорость перемещения поршня изменяется при изменении оборотов коленчатого вала. Поэтому приходиться изменять момент подачи искры, изменять, так называемый «угол опережения зажигания».

Меняется угол опережения зажигания

У дизельных двигателей при приближении поршня к ВМТ через специальную форсунку в надпоршневое пространство под высоким давлением впрыскивается топливо. Пока поршень дойдет до ВМТ, топливо должно испариться, перемешаться с воздухом, приготовиться к горению и начать гореть, когда поршень окажется в ВМТ.

Время на подготовку также постоянное, поэтому на высоких оборотах топливо впрыскивается раньше. Изменяется так называемый «угол опережения впрыска».

Третий такт – рабочий ход. Клапаны закрыты. Смесь интенсивно горит, её давление, и температура резко повышаются. Под действием давления поршень движется от ВМТ к НМТ и подталкивает коленчатый вал, подпитывая его энергией.

Четвертый такт – выпуск. Выпускной клапан открыт. Поршень движется от НМТ к ВМТ и отработанные газы выдавливаются из цилиндра.

Цикл закончился и начинается следующий. Следует заметить, что подпитка энергией коленчатого вала происходит только во время такта рабочего хода. Во время всех остальных тактов поршень перемещается (так называемые насосные ходы) за счет энергии, накопленной коленчатым валом от предыдущих рабочих циклов.

Как работает двигатель внутреннего сгорания — видео:

То есть в течение двух оборотов коленчатого вала подпитка его энергией происходит только пол-оборота. Это одна из причин невысокого коэффициента полезного действия четырехтактных двигателей.

Источник:
http://avto-i-avto.ru/ustrojstvo-avto/princip-raboty-dvigatelya-vnutrennego-sgoraniya-kakie-processy-proisxodyat-v-cilindrax.html

Двигатели внутреннего сгорания. Рабочие процессы

Работа большинства современных двигателей внутреннего сгорания (ДВС) как карбюраторных, так и дизельных основана на способе, включающем впуск свежего заряда рабочего тела в рабочие камеры циклически изменяющегося объема, сжатие, воспламенение и сгорание рабочей смеси, последующее расширение рабочего тела и выпуск отработавших газов (ОГ) из рабочих камер.

Данный способ реализуется в четырехтактных поршневых ДВС, а также практически во всех известных роторных двигателях.

Индикаторная диаграмма осуществления рабочих процессов описанным способом показана на Рисунке 1, где обозначено:

Основными показателями эффективности осуществления рабочих процессов в ДВС являются среднее индикаторное давление ( p i ) и индикаторный КПД ( η i ) /1/.

Среднее индикаторное давление определяет мощность, которую может развить ДВС на том или ином режиме работы (при постоянной угловой скорости вращения вала двигателя), а индикаторный КПД – его экономичность.

Указанные показатели зависят от большого количества различных факторов, которые условно можно разделить на основные и второстепенные.

К группе основных факторов целесообразно отнести те, изменения которых оказывают непосредственное влияние на изменения p i и η i .

К ним можно отнести следующие:

  • степень сжатия рабочего тела;
  • состав рабочей смеси;
  • степень наполнения рабочего объема свежим зарядом;
  • момент воспламенения рабочей смеси, скорость и длительность ее сгорания;
  • давление и температура свежего заряда рабочего тела в момент его впуска в рабочие камеры;
  • степень потерь теплоты в охлаждающую среду через стенки рабочих камер.

Все остальные факторы относятся к второстепенным, поскольку влияют на изменения p i и η i не непосредственно, а через изменения основных.

Использование влияния основных факторов на индикаторные показатели ДВС лежит в основе большинства известных способов выбора их конструктивных характеристик и регулирования на различных режимах работы.

Наиболее благоприятно на индикаторные показатели ДВС ( p i и η i ) влияет увеличение степени сжатия рабочего тела ( ε ), так как при этом одновременно увеличиваются как среднее индикаторное давление, так и индикаторный КПД.

Однако возможности увеличения степени сжатия в современных ДВС ограничены. Это связано с тем, что в двигателях с искровым зажиганием при больших степенях сжатия происходит преждевременное самовоспламенение рабочей смеси, и возникают детонационные явления, которые состоят в нарушении процесса горения и распространении ударных волн, что крайне отрицательно сказывается на работе двигателя. Вследствие отмеченного, степень сжатия в ДВС с искровым зажиганием не может превышать (6-10) единиц. Важнейшим преимуществом дизельных ДВС по сравнению с двигателями с искровым зажиганием является возможность увеличения в них степени сжатия рабочего тела (воздуха) до значительно больших значений – до (14-23) единиц. Однако дальнейшее ее увеличение малоэффективно, так как уже не дает заметного повышения p i и η i и приводит лишь к недопустимому росту тепловых и механических нагрузок на детали двигателя, повышению потерь теплоты в охлаждающую среду, ухудшению условий смесеобразования и т.д.

Состав смеси характеризуется коэффициентом избытка воздуха ( α ) и оказывает весьма существенное влияние на индикаторные показатели ДВС. Зависимости p i ( α ) и η i ( α ) при этом имеют максимальные значения, которые достигаются при разных составах рабочей смеси (разных значениях α ). У дизелей максимум p i имеет место при слабо обедненной смеси ( α ≈ 1), а максимум η i – при сильно обедненной смеси (при α от 3 до 5). У двигателей с искровым зажиганием максимум p i достигается при обогащенной смеси (при α от 0,7 до 0,9), а максимум η i – при α от 1,3 до 1,5 /1/.

Изменение состава смеси является основным способом регулирования мощности дизельных ДВС на различных режимах работы и осуществляется изменением подачи топлива через форсунки. При уменьшении подачи топлива коэффициент избытка воздуха ( α ) увеличивается, а мощность ДВС уменьшается. С увеличением подачи топлива коэффициент α уменьшается, а мощность ДВС увеличивается. Максимальный индикаторный КПД при этом достигается при малых нагрузках, а при нагрузках, близких к максимальным, индикаторный КПД дизельных ДВС существенно меньше максимального.

Регулирование состава смеси применяется также и в двигателях с искровым зажиганием и осуществляется специальными дозирующими устройствами. Целью такого регулирования является автоматическое изменение α в соответствии с наивыгоднейшей характеристикой, которая предусматривает увеличение α (обеднение смеси) при частичных нагрузках и его уменьшение (обогащение смеси) на режимах максимальных нагрузок. При таком регулировании максимальный индикаторный КПД ДВС с искровым зажиганием, также как и у дизелей, достигается при малых нагрузках, а при максимальных нагрузках их индикаторный КПД существенно меньше максимального.

В дизельных ДВС степень наполнения рабочего объема воздухом не регулируется и остается практически постоянной.

Момент воспламенения рабочей смеси определяется углом опережения воспламенения ( θ воспл ) относительно верхней мертвой точки (ВМТ) и весьма сильно влияет на индикаторные показатели ДВС.

При увеличении θ воспл увеличиваются:

  • отрицательная работа сжатия;
  • отрицательное влияние на η i увеличения теплоемкости рабочего тела от температуры в связи с возрастанием максимальной температуры цикла;
  • потери теплоты в среду охлаждения вследствие увеличения температурного напора и интенсивности теплоотдачи;
  • степень расширения рабочего тела вследствие завершения горения топлива и тепловыделения ближе в ВМТ.

Первые три фактора способствуют уменьшению p i и η i , а четвертый – их увеличению. Противоположное влияние указанных факторов определяет существование оптимальных значений угла опережения воспламенения, при которых p i и η i имеют максимальные значения. Каждому режиму работы двигателя соответствует свой оптимальный угол опережения воспламенения, на чем основаны способы управления работой ДВС посредством изменения моментов подачи управляющих воздействий на свечи зажигания в двигателях с искровым зажиганием и на форсунки для впрыска топлива в дизельных ДВС.

Скорость и длительность сгорания рабочей смеси в двигателях с искровым зажиганием какого-либо существенного влияния на их индикаторные показатели не оказывают, так как сгорание заранее подготовленной смеси в них происходит практически мгновенно и при практически неизменном объеме рабочих камер.

В отличие от карбюраторных двигателей с искровым зажиганием в дизельных ДВС впрыск топлива в рабочие камеры производится через форсунки и продолжается некоторое время уже после воспламенения рабочей смеси, вследствие чего скорость и длительность ее сгорания оказывают определенное влияние на характер тепловыделения и, соответственно, на индикаторные показатели ДВС. Это влияние выражается в том, что тепловыделение при малоизменяющемся (постоянном) объеме рабочих камер осуществляется не полностью и завершается тогда, когда их объем изменяется уже достаточно быстро, в результате чего индикаторный КПД и среднее индикаторное давление оказываются меньше тех, которыми они могли бы быть в случае полного завершения тепловыделения при постоянном (малоизменяющемся) объеме рабочих камер.

Читайте также  Датчик скорости – принцип работы, устройство

Увеличить скорость и уменьшить длительность сгорания топлива в дизельных ДВС и добиться за счет этого повышения индикаторного КПД и среднего индикаторного давления возможно при использовании различных способов улучшения характеристик впрыскивания и распыливания топлива, однако оно очень незначительно.

Увеличение давления свежего заряда рабочего тела в момент его впуска в рабочие камеры ( p к ) является одним из основных способов повышения среднего индикаторного давления ДВС и их мощностных характеристик, которые увеличиваются пропорционально степени повышения p к , и осуществляется путем наддува.

Поскольку при наддуве существенно возрастают максимальные значения давления ( p z ) и температуры ( Т z ) рабочего тела в рабочих камерах, то его применение возможно, в основном, в дизельных ДВС. Применение наддува в двигателях с искровым зажиганием в связи с опасностью возникновения детонации при увеличении p z и Т z весьма проблематично и требует принятия специальных мер по ее предотвращению.

Различают механический, газотурбинный, комбинированный и динамический наддувы.

Механический наддув осуществляется компрессором, привод которого соединен с валом двигателя. Существенным недостатком такой системы является снижение КПД двигателя, обусловленное необходимостью отбора части его мощности на привод компрессора.

При газотурбинном наддуве в качестве привода компрессора применяется газовая турбина, использующая энергию отработавших газов (ОГ), которые объединяются в единый агрегат (турбокомпрессор), что позволяет избежать отбора мощности с вала двигателя на привод компрессора и снижения КПД двигателя. Недостатками такой системы наддува являются ухудшение тяговых характеристик и приемистости двигателя, что обусловлено отсутствием механической связи агрегатов наддува с валом двигателя, инерционностью роторов турбокомпрессора и уменьшением энергии ОГ при малых нагрузках.

Для устранения этих недостатков используются системы комбинированного наддува, которые представляют собой определенные комбинации механического и газотурбинного наддува.

Для повышения плотности свежего заряда рабочего тела, подаваемого в рабочие камеры ДВС, могут использоваться также колебательные явления в системах газообмена, при которых перед впускными и выпускными клапанами периодически возникают волны сжатия и разрежения, обусловленные циклическим характером следования процессов газообмена.

Путем создания волны сжатия перед закрытием впускного клапана или волны разрежения при открытом выпускном клапане можно добиться весьма существенного увеличения массы свежего заряда, поступающего в рабочие камеры ДВС. Такой способ может быть осуществлен путем соответствующего выбора геометрических параметров системы газообмена и получил название динамического наддува.

При увеличении давления наддува ( p к ) одновременно возрастает и температура наддувочного воздуха ( Т к ), вследствие чего возрастают средние и максимальные температуры цикла, приводящие к увеличению теплоемкости рабочего тела и связанному с этим уменьшению индикаторного КПД, резкому возрастанию тепловых нагрузок на детали двигателя.

С целью снижения отрицательного влияния наддува на температуры цикла применяют охлаждение наддувочного воздуха (ОНВ), что позволяет снизить тепловые нагрузки на детали двигателя и предотвратить уменьшение индикаторного КПД цикла.

Потери теплоты в охлаждающую среду через стенки рабочих камер являются одним из основных видов потерь и оказывают существенное влияние как на индикаторный КПД, так и на среднее индикаторное давление. С их увеличением η i и p i уменьшаются, а с уменьшением – увеличиваются. Эффективных способов их снижения до сих пор не разработано. Частичное уменьшение упомянутых потерь может быть достигнуто за счет применения для изготовления стенок рабочих камер и поршней материалов с малой теплопроводностью.

Однако, несмотря на многообразие приведенных выше возможностей для воздействия на характер осуществления рабочих процессов в современных четырехтактных ДВС описанным в начале раздела способом, повысить их максимальный КПД за счет использования указанных возможностей для оптимального выбора их конструктивных характеристик и параметров регулирования режимов работы больше, чем до (30-40)% у двигателей с искровым зажиганием и до (40-50)% у дизельных двигателей практически невозможно /1/.

Среднее индикаторное давление ДВС на номинальном режиме их работы при этом может составлять от 0,9 до 1,2 МПа у двигателей с искровым зажиганием и от 0,75 до 1,05 МПа у дизельных двигателей /1/.

Проведенный анализ показывает, что при осуществлении рабочих процессов в четырехтактных ДВС упомянутым выше традиционным способом, независимо от степени сжатия, состава рабочей смеси, характеристик воспламенения, сгорания и прочих параметров выпуск ОГ в них из рабочих камер в конце такта расширения происходит при высоком остаточном давлении, которое может составлять от 0,35 до 0,5 МПа у двигателей с искровым зажиганием и от 0,2 до 0,4 МПа у дизельных двигателей, что говорит о недостаточно полном использовании энергии продуктов сгорания топлива в процессе их расширения в рабочих камерах. Высокое давление при выпуске ОГ является также основным источником шума, создаваемого двигателем, поскольку он происходит при сверхзвуковой скорости. Добиться снижения давления ОГ при их выпуске из рабочих камер в рамках традиционного способа осуществления рабочих процессов в ДВС не представляется возможным.

Более полного использования энергии продуктов сгорания топлива в ДВС можно достичь разными путями.

Один из таких путей уже упомянут ранее и состоит в использовании энергии ОГ в газовой турбине, являющейся приводом компрессора для осуществления наддува. Однако, такой способ применим только в двигателях с наддувом и существенного прироста внешней по отношению к ДВС полезной работы не дает, поскольку энергия ОГ в этом случае затрачивается на обеспечение функционирования самого ДВС.

Наиболее полного использования энергии продуктов сгорания топлива непосредственно в рабочих камерах можно достичь в ДВС, в которых реализуются термодинамические циклы с продолженным расширением , у которых степень расширения рабочего тела больше степени его сжатия.

Осуществление таких термодинамических циклов, в частности, возможно в ДВС, в которых сжатие и расширение рабочего тела происходят в рабочих камерах разного объема.

Одним из таких ДВС является, например, двигатель, содержащий не менее одной пары цилиндров с возвратно-поступательно движущимися поршнями и головку, в которой размещен периодически сообщающийся с цилиндрами газораспределительный золотник, снабженный общей для обоих цилиндров камерой сгорания и кинематически связанный с валом двигателя. Цилиндры выполнены разного объема, причем цилиндр малого объема снабжен впускными органами и используется для сжатия рабочего тела, а цилиндр большого объема – газовыпускными и используется для его расширения /3/.

Однако, существенным недостатком таких двигателей является необходимость использования целого ряда дополнительных устройств, которые усложняют их конструкцию, увеличивают гидравлические и механические потери.

Нами разработан способ осуществления рабочих процессов в ДВС, позволяющий осуществить термодинамические циклы с продолженным расширением непосредственно в рабочих камерах четырехтактных ДВС без использования каких-либо дополнительных устройств , повысить их КПД, снизить создаваемый ими шум и уменьшить выбросы теплоты в окружающее пространство.

Список использованных источников

  1. Двигатели внутреннего сгорания. Книга 1. Теория рабочих процессов. В.Н. Луканин, К.А. Морозов, А.С. Хачиян и др. Под ред. В.Н. Луканина. – М., Высшая школа, 1995 г.
  2. Двигатели внутреннего сгорания. Книга 2. Динамика и конструирование. В.Н. Луканин, И.В. Алексеев, М.Г. Шатров и др. Под ред. В.Н. Луканина. – М., Высшая школа, 1995 г.
  3. Авторское свидетельство №828780 по кл. FO2 В41/02.

Источник:
http://rotor-project.ru/art-workflows_dvs.html

Перечислить процессы, происходящие и цилиндре работающего ДВС.

Ответ.Процесс, происходящий в цилиндре двигателя за один ход поршня, называется тактом. Совокупность всех процессов, происходящих в цилиндре, т. е. впуск горючей смеси, сжатие ее, расширение газов при сгорании и выпуск продуктов сгорания, называется рабочим циклом.

Если рабочий цикл совершается за четыре хода поршня, т. е. за два оборота коленчатого вала, то двигатель называется четырехтактным.

Впуск — первый такт (рисунок 1 а). Поршень перемещается вниз и, действуя подобно насосу, создает разрежение в цилиндре. Под влиянием разности давлений через открытый впускной кла­пан цилиндр заполняется чистым воздухом. Выпускной клапан закрыт. В конце такта закрывается и впускной клапан. К этому моменту давление в цилиндре составляет 0,08. 0,09 МПа, темпе­ратура — 30. 50°С

Сжатие второй такт (рисунок 1 б). Поршень, продолжая движение, перемещается вверх. Поскольку оба клапана закрыты, поршень сжимает воздух, температура которого растет. Благода­ря высокой степени сжатия давление в цилиндре повышается до 4 МПа, воздух нагревается до температуры 600°С. В конце такта сжатия через форсунку в мелкораспыленном состоянии в ци­линдр впрыскивается порция дизельного топлива. Мелкие части­цы топлива, соприкасаясь с нагретыми сжатым воздухом стенка­ми цилиндра, самовоспламеняются, большая их часть сгорает.

Расширение или рабочий ход — третий такт (рисунок 1 в). Поршень идет вниз. Во время этого такта топливо сгорает полно­стью. Оба клапана при рабочем ходе закрыты. Температура газов при сгорании достигает 2000°С, давление повышается до 8 МПа и более. Под большим давлением расширяющихся газов поршень перемещается вниз и передает воспринимаемое им усилие через шатун на коленчатый вал, заставляя его вращаться. Около ИМТ давление снижается до 0,4 МПа, температура до 700°С.

Выпуск- четвертый такт (рисунок 3 г). Поршень перемещается вверх, выпускной клапан открывается. Отработавшие газы сначала под действием избыточного давления, затем под действием поршня удаляются из цилиндра. Когда поршень находит­ся около ВМТ, выпускной клапан закрываемся, впускной открывается. Рабочий цикл повторяется.

Далее процессы, происходящие в цилиндре, повторяются в указанной последовательности. Рабочим является только один такт — расширение, впуск и сжатие являются подготовительными, а выпуск — заключительным тактами.

Что называют порядком работы цилиндров?

Ответ. Последовательностьчередования одноименных тактов в ци­линдрах называют порядком работы двигателя. Порядок работы четырехцилиндровых отечественных тракторныхдвигателей 1-3-4-2. Это означает, что после рабочего хода в первом цилиндре следующий рабочий ход происходит в третьем, затем в четвертом и, наконец, во втором цилиндре (рисунок 2). Определенная по­следовательность соблюдаетсяи в других многоцилиндровых двигателях, например в шестицилиндровом V-образном дизеле: 1-4-2-5-3-6

При выборе порядка работы двигателя конструкторы

стре­мятся равномерно распределить нагрузку на коленчатый вал. Зная порядок работы цилиндров двигателя, можно правильно присоединить топливо проводы к форсункам и отрегулировать клапаны.

Рисунок 2: а — схема четырехцилиндрового дизеля;

б — порядок работы четырехцилиндрового дизеля

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Читайте также  Немец или японец

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Источник:
http://cyberpedia.su/2×5486.html

Что такое рабочий цикл двигателя

Процессы, протекающие в цилиндрах двигателя при его работе, повторяются циклично. Одним таким рабочим циклом считается совокупность тактов (впуск топливовоздушной смеси, сжатие, воспламенение и расширение газов, а также выпуск продуктов сгорания), обеспечивающая переход тепловой энергии, выделяемой при воспламенении одной порции смеси, непосредственно в работу. О том, что представляют собой рабочие циклы поршневых двигателей внутреннего сгорания, пойдет речь далее.

Что такое мертвые точки и такты ДВС

Количество этапов, входящих в один рабочий цикл ДВС (двигателя внутреннего сгорания), принято считать исходя из числа ходов поршня в цилиндре. Такие этапы получили название такты двигателя. Непосредственно ход поршня определяется его перемещением из одной крайней точки в другую. Они получили наименование мертвые, поскольку если в такой точке произойдет остановка поршня, он не сможет начать движение без внешнего воздействия. Простыми словами мертвые точки – это позиции, при которых движение в текущем направлении поршня прекращается и он начинает обратный ход.

Мертвые точки и ход поршня ДВС

Существуют две мертвые точки:

  • Нижняя (НМТ) – положение, при котором расстояние между поршнем и осью вращения коленвала минимально.
  • Верхняя (ВМТ) – положение, при котором цилиндр находится на максимальном удалении от оси вращения коленвала двигателя.

В англоязычной документации ВМТ обозначается как TDC (Top Dead Centre), А НМТ – BDC (Bottom Dead Centre).

Существуют двигатели, рабочий цикл которых может состоять из двух, а также из четырех тактов. Исходя из этого их разделяют на двухтактные и четырехтактные моторы.

Как работает четырехтактный двигатель

Конструктивно рабочий цикл типового четырехтактного агрегата обеспечивается работой следующих элементов:

  • цилиндр;
  • поршень – выполняет возвратно-поступательные движения внутри цилиндра;
  • клапан впуска – управляет процессом подачи топливовоздушной смеси в камеру сгорания;
  • клапан выпуска – управляет процессом выброса отработавших газов из цилиндра;
  • свеча зажигания – осуществляет воспламенение образовавшейся топливовоздушной смеси;
  • коленчатый вал;
  • распределительный вал – управляет открытием и закрытием клапанов;
  • ременной или цепной привод;
  • кривошипно-шатунный механизм – переводит движение поршня во вращение коленчатого вала.

Рабочий цикл четырехтактного двигателя

Рабочий цикл такого механизма состоит из четырех тактов, в ходе которых реализуются следующие процессы:

  1. Впуск (нагнетание топлива и воздуха). В начале цикла поршень находится в ВМТ. В момент, когда коленвал начинает вращаться, он воздействует на поршень и переводит его в НМТ. Это приводит к образованию разрежения в камере цилиндра. Распредвал воздействует на клапан впуска, постепенно открывая его. Когда поршень оказывается в крайнем положении клапан полностью открыт, в результате чего происходит интенсивное нагнетание топлива и воздуха в камеру цилиндра.
  2. Сжатие (увеличение давления горючей смеси). На втором этапе поршень начинает обратное перемещение к верхней мертвой точке такта сжатия. Коленвал совершает еще один поворот, а оба клапана полностью закрыты. Внутреннее давление увеличивается до величины 1,8 МПа и повышается температура горючей смеси до 600 С°.
  3. Расширение (рабочий ход). При достижении верхней позиции поршнем в камере сгорания устанавливается максимальная компрессия до 5 МПа и срабатывает свеча зажигания. Это приводит к возгоранию смеси и увеличению температуры до 2500 С°. Давление и температура приводят к интенсивному воздействию на поршень, и он начинает вновь перемещаться к НМТ. Коленвал совершает еще поворот, и таким образом, тепловая энергия переходит в полезную работу. Распредвал открывает выпускной клапан, и при достижении поршнем НМТ он полностью раскрыт. В результате отработавшие газы начинают постепенно выходить из камеры, а давление и температура снижаются.
  4. Выпуск (удаление отработавших газов). Коленвал двигателя поворачивается, и поршень начинает движение в верхнюю точку. Это приводит к выталкиванию отработавших газов и еще большему снижению температуры и уменьшению давления до 0,1 МПа. Далее, начинается новый цикл, в ходе которого указанные процессы вновь повторяются.

В ходе каждого такта коленчатый вал двигателя совершает поворот на 180°. За полный рабочий цикл коленвал поворачивается на 720°.

Четырехтактный двигатель получил широкое распространение. Он может работать как с бензином, так и с дизельным топливом. Отличием рабочего цикла для дизеля является то, что воспламенение топливовоздушной смеси происходит не от искры, а от высокого давления и температуры в конечной точке такта сжатия.

Особенности работы двухтактных моторов

Основой того, чем отличается двухтактный двигатель от четырехтактного, можно назвать тот факт, что в первом за один рабочий цикл коленвал совершает два оборота, а во втором весь рабочий цикл укладывается в один оборот коленвала (360°). Поршень при этом совершает лишь два хода. Процессы, происходящие в камере сгорания в течение рабочего цикла у двухтактного мотора, не отличаются от четырехтактных, но впуск горючей смеси и выпуск отработавших газов выполняются одновременно с тактами сжатия и расширения.

Процесс одновременного удаления отработавших газов и нагнетания в цилиндр свежего заряда, происходящий в двухтактном двигателе, получил название продувка.

Рабочий цикл двухтактного двигателя

Принцип работы простейшего двухтактного двигателя заключается в следующем:

  1. Такт сжатия. В начале цикла поршень находится в НМТ и движется в положение ВМТ такта сжатия. При этом происходит перекрытие окна продувки (впуска), а затем канала выпуска. В момент, когда поршень закрывает окно выпуска, начинается сжатие горючей смеси, и в пространстве под поршнем возникает разрежение. Это обеспечивает нагнетание топлива в камеру через приоткрытый клапан впуска.
  2. Такт расширения (рабочего хода). Когда поршень приближается к ВМТ, происходит срабатывание свечи зажигания, и горючая смесь воспламеняется. Это провоцирует резкое повышение давления и температуры, в результате чего поршень начинает движение вниз. Таким образом, газы совершают полезную работу, а поршень при движении к НМТ увеличивает компрессию топливовоздушной смеси. С ростом давления клапан начинает закрываться и препятствует попаданию горючей смеси во впускной коллектор. При достижении поршнем выпускного окна, происходит открытие последнего, и отработавшие газы удаляются в систему выхлопа. Давление в камере снижается, а дальнейшее движение поршня открывает канал продувки и топливовоздушная смесь подается в камеру, вытесняя отработавшие газы.

В зависимости от того, как реализована система продувки в устройстве двухтактного двигателя, их разделяют на разные типы:

  • С контурной кривошипно-камерной продувкой. Горючая смесь подается в камеру цилиндра напрямую из картера двигателя. При этом она всасывается в момент движения поршня к ВМТ, а при движении поршня к НМТ обеспечивается продувка за счет избыточного давления.
  • С клапанно-щелевой продувкой. Применяется для одноцилиндровых двигателей. Газораспределение реализуется путем перекрытия окон, выполненных в стенке цилиндра.
  • С прямоточной продувкой. В такой конструкции впуск выполняется через специальные продувочные окна, выполненные по окружности цилиндра в его нижней части. В свою очередь, выпуск реализуется через выхлопной клапан.
  • С использованием продувочных насосов. Применяется на многоцилиндровых двухтактных двигателях. При этом воздух для продувки сжимается специальным компрессором.

В отличие от четырехтактного, двухтактный двигатель не имеет системы газораспределения. Не требуют такие конструкции и организации сложной системы смазки. С другой стороны, четырехтактные моторы более экономичны по расходу топлива, а также меньше подвержены вибрации и обеспечивают более чистый выхлоп.

Источник:
http://techautoport.ru/dvigatel/teoriya/rabochiy-cikl.html

Устройство автомобилей

Рабочие циклы двигателей

Рабочий цикл четырехтактного карбюраторного двигателя

Работа двигателя внутреннего сгорания может быть представлена в виде систематически повторяющихся процессов, которые принято называть рабочими циклами. Рабочим циклом двигателя называется ряд последовательных, периодических повторяющихся процессов в цилиндрах, в результате которых тепловая энергия топлива преобразуется в механическую работу. При этом каждый полный рабочий цикл может быть разделен на одинаковые (повторяющиеся) части – такты.

Часть рабочего цикла, совершаемого за время движения поршня от одной мертвой точки до другой, т. е. за один ход поршня, называется тактом . Двигатели, рабочий цикл которых совершается за четыре хода поршня (два оборота коленчатого вала), называются четырехтактными.
В головке блока цилиндров, над камерой сгорания (рис. 1) карбюраторного двигателя устанавливаются впускной 4 и выпускной 6 клапаны, управляемые газораспределительным механизмом, а также свеча зажигания 5.

Рабочий цикл карбюраторного четырехтактного двигателя состоит из последовательных тактов впуска, сжатия, расширения и выпуска.

Такт впуска

В результате вращения коленчатого вала при пуске двигателя (вручную или с помощью специального устройства — например, заводной рукоятки или электродвигателя — стартера) поршень совершает движение от верхней мертвой точки (ВМТ) к нижней мертвой точке (НМТ). При этом впускной клапан 4 открыт, а выпускной клапан 6 закрыт.
Так как объем цилиндра при движении поршня вниз (к НМТ) быстро увеличивается, давление над поршнем уменьшается до 0,07. 0,09 МПа, т. е. внутри цилиндра создается вакуум – избыточное разрежение.
Впускной клапан 3 сообщается со специальным устройством – карбюратором, который приготавливает горючую смесь из топлива и воздуха. Вследствие разности давлений в карбюраторе и цилиндре горючая смесь всасывается через открытый впускной клапан в цилиндр двигателя.

Если двигатель уже работает, то горючая смесь, попадая в цилиндр из карбюратора, смешивается с остаточными продуктами сгорания от предыдущего цикла, и образует рабочую смесь. Смешиваясь с остаточными продуктами сгорания и соприкасаясь с нагретыми деталями цилиндра, рабочая смесь нагревается до температуры 75. 125 ˚С.

Такт сжатия

При подходе поршня к НМТ впускной клапан закрывается. Далее поршень начинает перемещаться вверх (к ВМТ), сжимая смесь воздуха, топлива и остаточных продуктов сгорания, которые не были удалены из цилиндра при выпуске. При движении поршня от НМТ к ВМТ вследствие сокращения объема цилиндра при закрытых клапанах повышаются давление, при этом возрастает температура рабочей смеси (в соответствии с законом Гей-Люссака).
В конце такта сжатия давление внутри цилиндра повышается до 0,9…1,5 МПа, а температура смеси достигает 270-480 ˚С.
В этот момент к электродам свечи зажигания 5 подводится высокое напряжение, которые вызывает между ними искровой разряд, результате чего рабочая смесь воспламеняется и сгорает.
В процессе сгорания топлива выделяется большое количество теплоты, из-за чего температура газов (продуктов сгорания) повышается до 2200-2500 ˚С, и давление внутри цилиндра достигает 3,0…4,5 МПа. Газы начинают расширяться, перемещая поршень вниз, к НМТ.

Такт расширения (рабочий ход)

Под давлением расширяющихся газов поршень движется от ВМТ к НМТ (при этом оба клапана закрыты). В этот промежуток времени (такт) происходит преобразование тепловой энергии в полезную работу, поэтому ход поршня в такте расширения называют рабочим ходом.
При движении поршня к НМТ объем цилиндра увеличивается, вследствие чего давление уменьшается до 0,3…0,4 МПа, а температура газов снижается до 900…1200 ˚С.

Такт выпуска

При подходе поршня к НМТ открывается выпускной клапан 6, в результате чего продукты сгорания рабочей смеси вырываются наружу из цилиндра.
При дальнейшем вращении коленчатого вала поршень начинает перемещаться от НМТ к ВМТ. Выталкивая отработавшие газы через открытый выпускной клапан, выпускной канал 7 и выпускную трубу в окружающую среду. К концу такта выпуска давление в цилиндре составляет 0,11…0,12 МПа, а температура – 600…900 ˚С.

При подходе поршня к ВМТ выпускной клапан закрывается, впускной открывается и начинается такт впуска, дающий начало новому рабочему циклу.

Читайте также  Как выправить вмятину на автомобиле своими руками?

Рабочий цикл четырехтактного дизеля

Рабочий цикл дизельного двигателя принципиально отличается от цикла карбюраторного двигателя тем, что рабочая смесь (смесь топлива, воздуха и остаточных продуктов сгорания) приготовляется внутри цилиндра, поскольку воздух подается в цилиндр отдельно, а топливо отдельно – через форсунку. В дизельном двигателе нет специального устройства для поджигания рабочей смеси – она самовозгорается в результате высокой степени сжатия.
Т. е. в дизеле, в отличие от карбюраторного двигателя, через впускной клапан подается не горючая смесь, а атмосферный воздух, а топливо впрыскивается через форсунку в конце такта сжатия. В цилиндре, как и в случае с карбюраторным двигателем, остаются продукты сгорания рабочей смеси, которые не удалось удалить продувкой.
Смесеобразование (перемешивание воздуха, топлива и остаточных продуктов сгорания) в дизеле протекает внутри цилиндра, что и обуславливает основные отличия череды тактов, составляющих рабочий цикл.

Высокая степень сжатия приводит к тому, что поступивший в цилиндр через впускной клапан воздух, смешивается с остаточными газами и раскаляется (в буквальном смысле этого слова) до высоких температур. И в это время в цилиндр впрыскивается топливо, которое вспыхивает и начинает гореть.

Рабочие процессы в дизельном двигателе протекают в следующей последовательности (рис. 2) :

Такт впуска

В период такта впуска поршень 2 движется от НМТ к ВМТ. При этом впускной клапан 5 открыт, выпускной клапан 6 закрыт. В цилиндре 7 из-за разности давлений в окружающей среде и в цилиндре в конце такта впуска возникает разрежение 0,08. 0,09 МПа, при этом температура внутри цилиндра не превышает 40…70 ˚С.

Такт сжатия

В процессе такта сжатия оба клапана закрыты. Поршень 2 движется от НМТ к ВМТ, сжимая смесь воздуха и отработавших газов. Давление в конце такта сжатия достигает 3…6 МПа, а температура – 450…650 ˚С (превышает температуру самовоспламенения топлива).

При подходе поршня к ВМТ, в цилиндр через форсунку 3 впрыскивается распыленное жидкое топливо. Топливо подается к форсунке (через трубку высокого давления) топливным насосом 1 высокого давления (ТНВД). Форсунка обеспечивает тонкое распыление топлива в сжатом воздухе. Распыленное топливо самовоспламеняется и сгорает. В результате сгорания температура в цилиндре достигает 1600…1900 ˚С, давление – 6…9 МПа.

Такт расширения (рабочий ход)

Такт выпуска

При подходе к нижней мертвой точке (НМТ) выпускной клапан 6 открывается и большая часть отработавших газов под воздействием высокого давления вырывается из цилиндра в атмосферу. Поршень начинает перемещение от НМТ к ВМТ и через открытый выпускной клапан выталкивает оставшиеся в цилиндре отработавшие газы в окружающую среду. К концу такта давление газов в цилиндре составляет 0,11…0,12 МПа, а температура – 600. 700 ˚С.
Далее рабочий цикл повторяется.

Таким образом, в четырехтактном двигателе только один такт – рабочий ход является полезным с точки зрения совершения полезной работы, остальные три вспомогательные, они осуществляются за счет кинетической энергии маховика, закрепленного на конце коленчатого вала.

Рабочий цикл двухтактного двигателя

В двухтактных ДВС рабочий цикл осуществляется за один оборот коленчатого вала.
Схема двухтактного дизеля представлена на рис. 3 .
Воздух насосом 3 нагнетается через впускное (продувочное) окно 4 в цилиндр. В нижней части цилиндра напротив впускного окна имеется выпускное окно 7. В головке 5 блока цилиндра установлены форсунки 6.

Первый такт (рис. 3, а) совершается при движении поршня от НМТ к ВМТ за счет кинетической энергии маховика двигателя. Оба окна открыты. Нагнетаемый через впускное окно 4 воздух вытесняет из цилиндра оставшиеся в нем отработавшие газы, которые выходят через выпускное окно 7. Таким образом происходит очистка цилиндра от отработавших газов (продувка) и заполнение его свежим зарядом.

Движущийся вверх поршень 8 сначала закрывает впускное окно, а затем выпускное окно. С этого момента начинается процесс сжатия, в конце которого через форсунку 6 впрыскивается топливо.
Таким образом, за первую половину оборота коленчатого вала совершаются процессы наполнения и сжатия, и начинается сгорание топлива.

Второй такт (рис. 3. б) происходит при движении поршня ВМТ к НМТ. В результате выделения теплоты при сгорании топлива повышается температура и давление внутри цилиндра. Поршень перемещается вниз, совершая полезную работу.
Как только поршень открывает выпускное окно, отработавшие газы под давлением начинают выходить в окружающую среду. К моменту открытия впускного окна давление внутри цилиндра снижается на столько, что возможна очистка цилиндра путем вытеснения отработавших газов свежим зарядом воздуха, подаваемым в цилиндр насосом 3.
Этот процесс называется продувкой цилиндра. При этом одновременно с вытеснением отработавших газов происходит наполнение цилиндра свежим зарядом. Далее все процессы повторяются в той же последовательности.

Рабочий цикл двухтактного карбюраторного двигателя аналогичен рабочему циклу двухтактного дизеля. Отличие состоит в том, что в цилиндр поступает не чистый воздух, а горючая смесь, и в конце процесса сжатия в цилиндре посредством свечи зажигания подается искра, в результате чего происходит воспламенение горючей смеси.

Одним из преимуществ двухтактного двигателя по сравнению с четырехтактным является то, что каждый рабочий ход здесь протекает в период одного оборота коленчатого вала, а не двух. Очевидно, что снижение количества тактов должно привести к повышению КПД из-за уменьшения паразитических процессов . А поскольку в четырехтактном двигателе за два оборота коленчатого вала протекают четыре такта, из которых полезным является лишь такт рабочего хода (т. е. остальные три такта являются паразитическими), то естественно предположить, что КПД четырехтактного двигателя должен быть ниже, чем КПД четырехтактного двигателя.

Существенными недостатками двухтактных двигателей является их низкая топливная экономичность и меньший срок службы по сравнению с четырёхтактными двигателями. Объясняется этот недостаток тем, что при продувке цилиндра (или цилиндров) свежая горючая смесь частично удаляется вместе с отработавшими газами, поскольку, в отличие от четырехтактного двигателя, выпуск и впуск газов протекает одновременно.
Этими недостатками, а также большей токсичностью отработавших газов объясняется ограниченное применение двухтактных двигателей на автомобилях.

Источник:
http://k-a-t.ru/PM.01_mdk.01.01/3_dvs_3/

Рабочий цикл двигателя

Рабочим циклом называется совокупность периодически повторяющихся в определенной последовательности процессов, протекающих в каждом цилиндре двигателя, в результате которых тепловая энергия переходит в работу.

Тактом называется процесс, происходящий в цилиндре при перемещении поршня от одной мертвой точки к другой.

Если рабочий цикл совершается за четыре хода поршня, чему соответствует два оборота коленчатого вала, то двигатель с таким циклом называется четырехтактным. Каждый такт такого двигателя имеет свое наименование и свои особенности.

Рис.2. Рабочий цикл четырёхтактного дизеля: 1-топливный насос; 2-поршень; 3-форсунка; 4-воздухоочиститсль; 5-впускной клапан; 6-выпускной клапан; 7-цилиндр

Такт впуска. При перемещении поршня от ВМТ до НМТ над ним освобождается пространство, куда через открывающийся впускной клапан 5 (рис.2) поступает чистый воздух у дизеля или смесь воздуха с мелко распыленным бензином (горючая смесь). Поступивший свежий заряд смешивается с остатками отработавших газов от предыдущего такта (такая смесь называется рабочей). При подходе к НМТ давление в цилиндре вследствие сопротивления во впускном трубопроводе, ниже атмосферного и составляет 0,07. 0,09. Температура газов в конце этого такта достигается 40. 70°С у дизеля и 70. 13О°С у карбюраторного двигателя.

Такт сжатия. При перемещении поршня от НМТ к ВМТ впускной клапан закрывается и поступивший в цилиндр воздух или рабочая смесь сжимается, вследствие чего их температура и давление повышаются. Величина повышения давления и температуры определяется степенью сжатия двигателя. У дизеля температура в конце такта сжатия достигает 550. 750°С, а давление 4. 5МПа; у карбюраторного двигателя рабочая смесь нагревается до 300. 430°, а давление составляет 0,8. 1.5МПа.

Такт расширения. При подходе поршня к ВМТ в цилиндр дизеля через форсунку впрыскивается топливо, которое, перемещаясь с нагретым и сжатым воздухом, сгорает; при этом давление газов в цилиндре возрастает до 6. 9 МПа, а их температура поднимается до 1800. 2000° С. Под действием давления расширяющихся газов поршень перемещается от ВМТ к НМТ. В конце этого такта температура газов понижается до 700. 900° С, а давление до 0,3. 0,5МПа.

В карбюраторном двигателе при подходе поршня к ВМТ сжатия горючая смесь воспламеняется от электрической искры, возникающей между электродами свечи, ввернутой в цилиндра. От сгорания смеси давление газов возрастает до 3,5. 5 МПа, а температура до 2100. 2400°. К концу такта расширения у карбюраторного двигателя температура газов снижается до 900. 1200°, а давление до 0,3. 0,35 МПа.

Такт выпуска. При перемещении поршня от НМТ к ВМТ открывается выпускной клапан, и отработавшие газы выталкиваются из цилиндра в атмосферу. При этом давление газов к концу такта снижается до 0,11. 0,12 МПа, а температура до 500. 700°С у дизеля и 300. 400° у карбюраторного двигателя.

Таким образом, в четырехтактном двигателе только один такт расширения — ход поршня под действием давления газов поворачивает коленчатый вал и совершает полезную работу; этот ход называется рабочим. Остальные такты — впуска, сжатия и выпуска — называются вспомогательными. После такта выпуска рабочий цикл двигателя повторяется.

Источник:
http://xn—-7sbfkccucpkracijq8iofobm.xn--p1ai/%D0%B2%D0%BE%D0%B5%D0%BD%D0%BD%D0%B0%D1%8F-%D1%82%D0%B5%D1%85%D0%BD%D0%B8%D0%BA%D0%B0/%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B8-%D0%BF%D0%BE-%D1%83%D1%81%D1%82%D1%80%D0%BE%D0%B9%D1%81%D1%82%D0%B2%D1%83-%D0%B2%D0%B0%D1%82/%D0%A0%D0%B0%D0%B1%D0%BE%D1%87%D0%B8%D0%B9-%D1%86%D0%B8%D0%BA%D0%BB-%D0%B4%D0%B2%D0%B8%D0%B3%D0%B0%D1%82%D0%B5%D0%BB%D1%8F