Приемистость двигателя

Приемистость двигателя

«Приемистость двигателя» в книгах

Диагностика двигателя

Диагностика двигателя Многие неисправности двигателя можно диагностировать на слух. Но учтите, что такая диагностика должна проводиться на предварительно прогретом двигателе, потому что если мотор холодный — зазоры в некоторых сопряжениях могут быть увеличенными,

Прогрев двигателя

Прогрев двигателя О том, что перед поездкой в холодную погоду автомобиль следует прогреть хотя бы несколько минут, дав двигателю поработать на холостом ходу, все помнят со времен занятий в автошколе. Этому моменту преподаватели обычно уделяют должное внимание и

Неисправности двигателя

Неисправности двигателя К наиболее частым неисправностям бензиновых двигателей, часть которых присуща и дизельным, относятся следующие: двигатель работает неустойчиво или останавливается на холостом ходу; двигатель развивает недостаточную мощность; двигатель не

5. Запуск двигателя

5. Запуск двигателя Убедившись, что автомобиль на стояночном тормозе, выжимаем педаль сцепления и устанавливаем рычаг переключения передач в нейтральное положение (или убеждаемся, что он находится в таком положении). Дело в том, что включенная передача при неработающем

Приёмистость двигателя

Литраж двигателя

Радиатор (двигателя)

Разнос двигателя

Цикл двигателя

ГЛАВА 5. ПРИЕМИСТОСТЬ И ПРИСПОСОБЛЯЕМОСТЬ ДВИГАТЕЛЯ

ГЛАВА 5. ПРИЕМИСТОСТЬ И ПРИСПОСОБЛЯЕМОСТЬ ДВИГАТЕЛЯ Наши оппоненты некорректно применяют термины «приемистость» и «приспособляемость» двигателя. В статье «Двигатели для «летающих танков», опубликованной в журнале «Двигатель», и в ранее опубликованных материалах

ТИП ДВИГАТЕЛЯ

ТИП ДВИГАТЕЛЯ ВНИИТМ и НИИД, признавая то, что основным типом двигателя для отечественных БТТ на ближайшие 20-30 лет являются турбопоршневые двигатели, одновременно считают, что «основными типами двигателей для объектов БТТ продолжают оставаться турбопоршневые двигатели

Двигатель работает нормально на холостом ходу, но автомобиль разгоняется медленно и с «провалами»; плохая приемистость двигателя

Двигатель работает нормально на холостом ходу, но автомобиль разгоняется медленно и с «провалами»; плохая приемистость двигателя Неисправности системы зажигания Не отрегулирован зазор между контактами прерывателя. Отрегулировать угол замкнутого состояния контактов

Двигатель не развивает полной мощности и имеет плохую приемистость (постепенное снижение тяговых качеств автомобиля. Разгон становится вялым, расход топлива возрастает)

Двигатель не развивает полной мощности и имеет плохую приемистость (постепенное снижение тяговых качеств автомобиля. Разгон становится вялым, расход топлива возрастает) Неисправности карбюратора Недостаточное наполнение цилиндров рабочей смесью из-за неполного

Выхлоп двигателя дымный. В картер двигателя поступает повышенный объем газов

Выхлоп двигателя дымный. В картер двигателя поступает повышенный объем газов Диагностирование двигателя по цвету дыма из выхлопной трубы Сине-белый дым – неустойчивая работа двигателя. Рабочая фаска клапана подгорела. Оценить состояние газораспределительного

Двигатель не развивает полную мощность. Его приемистость недостаточна

Двигатель не развивает полную мощность. Его приемистость

Источник:
http://slovar.wikireading.ru/492649

Большая Энциклопедия Нефти и Газа

Приемистость — двигатель

Приемистость двигателя согласно ряду опубликованных данных улучшается, так как отставание топлива от потока воздуха при впрыске становится менее ощутимым. [1]

Приемистостью двигателя называют его способность разгонять инерционную нагрузку. Эта способность зависит от величины развиваемого момента и момента инерции вращающихся ( или возвратно-поступательно движущихся) частей. [2]

Время приемистости двигателя в пределах нормальных температур газов за турбиной и окружающего воздуха устанавливается инструкцией и постоянно проверяется в процессе эксплуатации. Запаздывание или растянутая приемистость ГТД характеризует неудовлетворительную регулировку автоматики приемистости либо неисправность каких-либо элементов технического устройства На ГТД с недостаточной приемистостью летать опасно, так как может произойти остановка либо помпаж двигателя. [3]

Требование приемистости двигателя ( третье требование) выполняется слабо. При значительном прикрытии заслонки поступление топлива из компенсационного распылителя значительно уменьшается, вследствие чего колодец заполняется топливом. [4]

Под термином приемистость двигателя принято понимать скорость повышения числа оборотов полностью прогретым двигателем при резком открытии дроссельной заслонки. Приемистость двигателя зависит от фракционного состава бензина ( главным образом температуры испарения 50 % бензина) и конструкции впускной системы двигателя. [5]

Ухудшение характеристик приемистости двигателя при увеличении высоты полета связано с уменьшением избытка мощности на турбине; оно выражается в увеличении времени приемистости двигателя и в ограничении темпа дачи или уборки РУД до 2 — 3 сек на больших высотах по сравнению с 1 — 2 сек на малых и средних высотах. Кроме того, на больших высотах не допускается встречная приемистость из-за сужения диапазона устойчивой работы ТРД с ростом высоты полета. [7]

На графике зависимости приемистости двигателя от состава горючей смеси ( рис. 20) по оси ординат отложено время разгона т, а по оси абсцисс коэффициент избытка воздуха а. Таким образом, для улучшения приемистости двигателя, а также для устранения всех нарушений, которыми сопровождается работа двигателя при резком открытии дроссельной заслонки карбюратора, необходимо кратковременное обогащение горючей смеси. [8]

На графике зависимости приемистости двигателя от состава горючей смеси ( рис. 19) по оси ординат отложено время разгона т, а по оси абсцисс коэффициент избытка воздуха а. Таким образом, для улучшения приемистости двигателя, а также для устранения всех нарушений, которыми сопровождается работа двигателя при резком открытии дроссельной заслонки карбюратора, необходимо кратковременное обогащение горючей смеси. [10]

Карбюратор должен обеспечивать достаточную приемистость двигателя . Главным образом, это относится к тому, чтобы двигатель быстро развивал мощность от холостой до максимальной нагрузки и обороты. Эго имеет большое значение для всякого автомобиля, а в особенности для специальных автомобилей. [11]

Существенным недостатком турбокомпресеорного наддува является также пониженная приемистость двигателя вследствие отсутствия у него кинематической связи с нагнетателем. Турбокомпрессор всегда отстает в необходимом изменении подачи воздуха при изменении режима работы двигателя; причиной этого является инерция вращающихся масс нагнетателя и турбины. [12]

Температура выкипания 90 % также влияет на приемистость двигателя , кроме того, на полноту испарения топлива во всасывающей системе, на степень разжижения смазки ( особенно в автомобильном двигателе) неиспарившимися хвостовыми фракциями топлива. [13]

Изучение влияния фракционного состава отечественных бензинов на приемистость двигателя ГАЗ-51 ( табл. 64) показало, что даже без нагрузки на двигатель количество средних и хвостовых фракций в бензине существенно влияет на приемистость двигателя. [15]

Источник:
http://www.ngpedia.ru/id312492p1.html

Приемистость двигателя

Авиация: Энциклопедия. — М.: Большая Российская Энциклопедия . Главный редактор Г.П. Свищев . 1994 .

Смотреть что такое «Приемистость двигателя» в других словарях:

приемистость двигателя — Способность двигателя быстро и плавно переходить в режима малого газа на режим полного газа. Примечание. Приемистость двигателя оценивается его временем разгона … Политехнический терминологический толковый словарь

Приемистость — Приёмистость быстрота изменения режима работы поршневого или газотурбинного двигателя в сторону увеличения оборотов. Может быть однозначно охарактеризована временем приёмистости то есть временем, прошедшим от начала движения органом управления… … Википедия

Приемистость — приёмистость I ж. Способность какого либо двигателя, установки, машины быстро переходить на большие обороты. II ж. местн. отвлеч. сущ. по прил. приёмистый Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000 … Современный толковый словарь русского языка Ефремовой

Приемистость — приёмистость I ж. Способность какого либо двигателя, установки, машины быстро переходить на большие обороты. II ж. местн. отвлеч. сущ. по прил. приёмистый Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000 … Современный толковый словарь русского языка Ефремовой

Читайте также  Что произойдет с двигателем после знаменитой народной - раскоксовки?

Бензин — (Petrol) Бензин это самое распространенное топливо для большинства видов транспорта Подробная информация о составе, получении, хранении и применении бензина Содержание >>>>>>>>>>>>>> … Энциклопедия инвестора

Газотурбинный двигатель — с одноступенчатым радиальным компрессором, турбиной, рекуператором, и воздушными подшипниками Газотурбинный двигатель (ГТД) тепловой двигатель, в котором газ сжимается и нагревается, а затем энергия сжатого и нагретого… … Википедия

Двухконтурный турбореактивный двигатель — Газотурбинный двигатель (ГТД, ТРД) тепловой двигатель, в котором газ сжимается и нагревается, а затем энергия сжатого и нагретого газа преобразуется в механическую работу на валу газовой турбины. В отличие от поршневого двигателя, в ГТД процессы… … Википедия

Теплоэлектростанция — (Thermal power, ТЭС) Определение ТЭС, типы и характеристики ТЭС. классификация ТЭС Определение ТЭС, типы и характеристики ТЭС. классификация ТЭС, устройство ТЭС Содержание Содержание Определение Градирня Характеристики Классификация Типы… … Энциклопедия инвестора

ГОСТ 23851-79: Двигатели газотурбинные авиационные. Термины и определения — Терминология ГОСТ 23851 79: Двигатели газотурбинные авиационные. Термины и определения оригинал документа: 293. Аварийное выключение ГТД Аварийное выключение Ндп. Аварийное отключение ГТД D. Notausschaltung Е. Emergency shutdown F. Arrêt urgent… … Словарь-справочник терминов нормативно-технической документации

режим — 36. режим [частота вращения] «самоходности»: Режим [минимальная частота вращения выходного вала], при котором газотурбинный двигатель работает без использования мощности пускового устройства при наиболее неблагоприятных внешних условиях. Источник … Словарь-справочник терминов нормативно-технической документации

Источник:
http://dic.academic.ru/dic.nsf/enc_tech/3137/%D0%9F%D1%80%D0%B8%D0%B5%D0%BC%D0%B8%D1%81%D1%82%D0%BE%D1%81%D1%82%D1%8C

Приемистость и самоприспособляемость двигателей

Способность двигателя с ростом частоты вращения коленчатого вала наращивать мощность называется его приемистостью.

Приемистость двигателя непосредственно влияет на приемистость автомобиля, т. е. на его способность разгоняться.

Скоростная характеристика отражает степень приемистости двигателя: чем круче кривая Ne, тем приемистость двигателя больше.

Если сравнить кривые Ne карбюраторного двигателя (см. рис. 10.5) и дизеля (см. рис. 10.6), то видно, что кривая Ne дизеля круче, следовательно, дизель обладает большей приемистостью.

Способность двигателя с ростом внешней нагрузки сохранять частоту вращения коленчатого вала называется его самоприспособля- емостью (эластичностью).

Например, затяжной подъем на прямой передаче преодолевают два автомобиля, двигатели которых обладают разными скоростными характеристиками. Двигатель того автомобиля, который при преодолении подъема сможет дольше двигаться без перехода на пониженную передачу, и будет обладать более высокой самоприспо- собляемостью. Самоприспособляемость двигателя к изменению внешней нагрузки оценивается коэффициентом самоприспособляе- мости:

Рис. 10.8. Самоприспособляемость двигателей к изменению внешней нагрузки: Мсщ, Мсц, Мс — моменты сопротивлений; Мккд и Мкд — крутящие моменты карбюраторного двигателя и дизеля соответственно; I, 2, 2′, 3 — точки равновесных состояний; Ап и Ап’ — диапазоны изменения частоты вращения коленчатого вала при самоприспо- собляемости двигателя

где Мк тах — максимальный крутящий момент; Мкном — номинальный крутящий момент (при номинальной частоте вращения коленчатого вала).

Большие значения у свидетельствуют о лучшей самоприспособ- ляемости двигателя.

Учитывая пологий характер кривой Л/к=/(л) дизеля (см. рис. 10.6) и более крутой карбюраторного двигателя (см. рис. 10.5), допустим, что номинальная частота вращения коленчатого вала и значения Мкном для обоих двигателей равны (рис. 10.8).

Обозначим момент сопротивления движению, прилагаемый через трансмиссию к маховику двигателя Мс. Если Мс = Мк, то автомобиль движется с постоянной скоростью (кривая Мс1, точка 1).

Допустим, что сопротивление, не изменяя своего характера, увеличивается (кривая МсП). Очевидно, что частота вращения коленчатого вала будет уменьшаться. Однако у карбюраторного двигателя п уменьшится на Ап, а у дизеля на Ал’до нового равенства моментов Мс и Мк (точка 2 и 2′). При этом частота вращения коленчатого вала дизеля снизится больше, чем карбюраторного.

При увеличении момента сопротивления (кривая Л/сШ) карбюраторный двигатель будет продолжать работать с более низкой частотой вращения коленчатого вала, так как равенство моментов Мс и Мк определится в точке 3, а дизель остановится, так как значение Мс в данном случае больше Мка.

Таким образом, самоприспособляемость дизеля к изменению внешней нагрузки хуже. Для устранения этого недостатка увеличивают размеры цилиндра, что приводит к увеличению крутящего момента, а также применяют всережимные регуляторы частоты вращения коленчатого вала.

Источник:
http://studref.com/596276/tehnika/priemistost_samoprisposoblyaemost_dvigateley

Приемистость автомобиля

Под приемистостью автомобиля понимают его способность быстро изменять скорость движения.

Оценочными параметрами приемистости являются:

  • а) максимально возможное ускорение в различных условиях движения;
  • б) время разгона;
  • в) путь разгона.

Максимально возможное ускорение (ускорение при работе двигателя на внешней характеристике) для любых условий движения можно найти, пользуясь равенством (41). Решая это равенство относительно /а, получим

Из равенства (53) видно, что максимальные ускорения различны для дорог с различными значениями у, а на одной и той же дороге (при у = const) изменяются е изменением скорости движения и включенной передачи, поскольку D = /(уа/ё |— ) и 8вр = (/к п )

. Имея динамическую характеристику и зная значения 6 , можно для различных дорог построить графики зависимости ускорения от скорости (рис. 18). Оценку приемистости различных автомобилей можно производить, сравнивая графики зависимости /а = f(ya) при движении по дорогам с одинаковым значением у (обычно у = 0,015. 0,02).

Однако точная оценка по этим графикам затруднительна, поскольку у различных автомобилей могут отличаться не только максимальные значения ускорений на каждой передаче, но и характер изменения ускорений с изменением скорости. Кроме того, различные автомобили могут иметь трансмиссии с различным числом ступеней.

Более удобными и наглядными оценочными параметрами приемистости автомобиля являются время и путь разгона автомобиля в заданном интервале скоростей.

Для теоретического определения времени и пути разгона предложено несколько способов. Наиболее известными являются графические способы, предложенные Е. А. Чудаковым и Н. А. Яковлевым.

Метод Н. А. Яковлева состоит в том, что расчетный интервал скоростей разбивается на более мелкие (элементарные) интервалы, для каждого из которых ускорение j считается постоянным, равным среднему для данного интервала (рис. 18).

Тогда для каждого такого элементарного интервала можно записать:

где v . — скорость (м/с) в начале интервала; va2 — скорость (м/с) в конце интервала; At — время (с), за которое скорость движения автомобиля увеличивается от val до га2.

Определяя из равенства (54) At, получим:

Рис. 18. График ускорений

Полное время разгона от некоторой начальной скорости до конечной скорости v /7-го элементарного интервала равно сумме Дг, + Дг, +. + Д t значений времени разгона на каждом элементарном интервале.

Путь, проходимый при равноускоренном движении, определяется формулой

Путь AS, проходимый за время Д/, соответствующий некоторому элементарному интервалу, равен

Подставив значение At из формулы (55), после преобразования получим:

где — средняя скорость на элементарном интервале.

Определив путь разгона на каждом из элементарных интервалов, можно подсчитать полный путь разгона от скорости v , до скорости v :

Если скорость va выражается в км/ч, то

Читайте также  Как узаконить свап двигателя 2020

Принимая на каждом элементарном интервале ускорение постоянным, мы, конечно, делаем ошибку. Эта ошибка будет тем меньшей, чем меньшими берутся элементарные интервалы.

Для повышения точности расчета интервалы скоростей берут в пределах 0,5-1 м/с 2 на первой передаче, 1-3 м/с 2 на промежуточных и 3-4 м/с’ на высшей.

Подсчитав время и путь разгона для различных интервалов изменения скорости, строят график (рис. 19), по которому можно найти время и путь, необходимые для увеличения скорости автомобиля в любом заданном интервале.

Методом Н. А. Яковлева можно пользоваться как для подсчета времени и разгона в некотором интервале скоростей на какой- либо одной передаче, так и для подсчета времени и пути разгона с переходом от любой низшей передачи к высшей.

При подсчете времени и пути разгона с переключением передач необходимо знать, при каких скоростях происходит переключение передачи. В реальных условиях момент перехода определяется водителем и может быть различным. Условно считают, что при отсутствии ограничителя (или регулятора) оборотов переключение передач происходит при скоростях, соответствующих пересечению кривых ja=.fi v а) (рис. 18) на различных передачах. При наличии ограничителя (регулятора) переключение передач происходит либо при скоростях, соответствующих пересечению указанных кривых, либо, если в пределах оборотов, допустимых ограничителем (регулятором), такое пересечение невозможно — при скоростях, соответствующих оборотам по ограничителю (регулятору).

В момент переключения передач происходит разрыв потока мощности от двигателя к ведущим колесам, в результате чего в течение некоторого времени происходит уменьшение скорости движения за счет действия на автомобиль сил сопротивления. Время t , в течение которого двигатель оказывается отсосдинсн-

Рис. 19. График ускорения, времени и пути разгона ным от ведущих колес (время переключения передач), зависит как от ряда конструктивных особенностей автомобиля (особенно коробки передач), так и от квалификации водителя. 11ри хорошей квалификации водителя время переключения передач в зависимости от конструктивных особенностей автомобиля (коробки передач и типа двигателя) изменяется в пределах tn= 0,5. 5 с.

Величина снижения скорости за время переключения передач зависит от типа дороги, скорости движения автомобиля и параметров его обтекаемости. При небольших скоростях движения можно считать

Путь, проходимый автомобилем за время переключения передач, можно приближенно определить, пренебрегая падением скорости за это время.

Тогда

где van — скорость, достигнутая к моменту переключения передачи.

Пример графиков времени и пути разгона на передачах показан на рис. 20.

  • 11ри теоретических расчетах процесс разгона обычно рассматривается упрощенно.
  • 1. Считается, что разгон полностью происходит при работе двигателя с полной подачей топлива и начинается со скорости, соответствующей минимально устойчивым оборотам двигателя при полной подаче топлива.

Рис. 20. График времени и пути разгона

В действительности, троганис автомобиля с места и разгон его после включения той или иной передачи происходят следующим образом. При выключенном сцеплении двигатель работает на холостом ходу с малой подачей топлива на оборотах, подобранных так, чтобы в момент включения сцепления двигатель не заглох. Плавно включая сцепление, водитель одновременно увеличивает подачу топлива таким образом, чтобы двигатель не глох и в то же время нарастание ускорения движения автомобиля не вызывало неприятных ощущений у пассажиров или больших динамических нагрузок в агрегатах автомобиля. При этом в течение некоторого периода времени из-за пробуксовки сцепления между оборотами двигателя и скоростью движения автомобиля нет прямой пропорциональности.

После полного включения сцепления и прекращения его пробуксовки водитель увеличивает подачу топлива в двигателе до полной, и оставшееся время разгон происходит так, как это принято при расчете, т. е. с полной подачей топлива.

Таким образом, в течение некоторого времени в результате пробуксовки сцепления и неполной подачи топлива разгон происходит с ускорениями, меньшими, чем принимаемые при расчетах.

2. Внешняя скоростная характеристика двигателя, являющаяся исходной для построения графика ускорения, соответствует установившемуся режиму работы двигателя, т. е. каждая ее точка снимается при неизменной частоте вращения коленчатого вала.

При разгоне частота вращения коленчатого вала непрерывно изменяется.

Как показывает опыт, при переменной частоте вращения коленчатого вала внешняя скоростная характеристика двигателя не совпадает с внешней скоростной характеристикой, соответствующей установившемуся режиму. У современных двигателей внутреннего сгорания (ДВС), в зависимости от их типа и конструктивных особенностей (характеристики приборов системы питания, форма камеры сгорания и др.), при одних и тех же значениях частоты вращения мощность при полной подаче топлива на неустановившихся режимах может быть либо меньше, либо больше, чем при установившихся.

Это обстоятельство также вызывает изменение фактических времени и пути разгона по сравнению с расчетными.

Таким образом, описанный выше теоретический метод определения времени и пути разгона является приближенным и может давать результаты, существенно отличающиеся от реальных.

В настоящее время имеются более точные методы, однако они являются сложными и требуют знания ряда величин, определяемых экспериментальным путем.

Источник:
http://studme.org/162603/tehnika/priemistost_avtomobilya

ГЛАВА 5. ПРИЕМИСТОСТЬ И ПРИСПОСОБЛЯЕМОСТЬ ДВИГАТЕЛЯ

ПРИЕМИСТОСТЬ И ПРИСПОСОБЛЯЕМОСТЬ ДВИГАТЕЛЯ

Наши оппоненты некорректно применяют термины «приемистость» и «приспособляемость» двигателя. В статье «Двигатели для «летающих танков», опубликованной в журнале «Двигатель», и в ранее опубликованных материалах авторы утверждают, что по коэффициенту приемистости ГТД значительно превосходили дизельные двигатели на всех сравнительных испытаниях танков с 1972 по 1987 г. [34].

Приемистость оценивается временем разгона двигателя от режима холостого хода (для ГТД — режима малого газа) до максимальной мощности двигателя.

Приемистость дизельных двигателей В-84 уральских танков составляет 1—2 с.

Приемистость турбокомпрессора ГТД танка Т-80 — 7-8 с [7].

Дизель превосходит ГТД по этому параметру в 3—4 раза.

Необходимо отметить, что с ухудшением показателя приемистости двигателя снижается средняя скорость движения танка по местности и увеличивается расход топлива на один километр пути.

Коэффициент приспособляемости — отношение максимального крутящего момента на валу двигателя на режиме минимально допустимой рабочей частоты вращения выходного вала двигателя к крутящему моменту при частоте вращения вала, соответствующей максимальной мощности двигателя.

По этому показателю ГТД танка Т-80 выигрывает у дизеля танка Т-90С в 1,9 раза (у ГТД-1250 — 2,46 [31]; у турбопоршневого двигателя В-92С2 — до 1,3 [35]).

Коэффициент приспособляемости определяет количество переключений передач при движении танка по трассе.

Оба показателя — «приемистость» и «коэффициент приспособляемости» — влияют на средние скорости движения и топливную экономичность танка, но их влияние на изменение подвижности танка различно.

Для того, чтобы уменьшить влияние низкой приемистости ГТД танка Т-80 и обеспечить максимальное ускорение танка при движении по пересеченной местности, водители практикуют длительный полный выжим педали газа «до пола» или установку рычага сектора ручной подачи топлива в положение «максимум» (обеспечивая максимальную частоту вращения ТК) и управляют скоростью движения танка с помощью штатных тормозных средств (включение тормозов в бортовых коробках передач и торможение двигателем с помощью регулируемого соплового аппарата — РСА).

Следствием этого способа управления двигателем является дополнительный повышенный расход топлива, снижение надежности трансмиссии и возможность травмирования экипажа при резких манипуляциях тормозами.

Читайте также  Outside и Inside что означает на шинах - Как установить асимметричную резину inside outside

Лучший коэффициент приспособляемости ГТД, чем у ПД, позволяет в танке Т-80 применять трансмиссию с четырьмя передачами вперед и одной передачей назад. На танке Т-90 — семь передач вперед и одна передача назад. Таким образом, коэффициент приспособляемости оказывает влияние на среднюю скорость танка только опосредованно, снижая утомляемость механика-водителя при пользовании меньшим количеством переключений передач.

Сторонники газотурбинного танка придают этому качеству необоснованно высокое значение, каким-то образом вычислив, что меньшее количество передач обеспечивает снижение утомляемости механика-водителя Т-80 на марше по сравнению с утомляемостью механика-водителя уральского дизельного танка в 3 раза [36].

Это утверждение опровергается «reductio ad absurdum» («приведением к нелепости», как способу доказательства): попробуйте представить мысленно, что после трудного 300-км марша двух рот — танков Т-80У и Т-90 Альберт Дзявго (считающий, что механики-водители Т-80У устали в 3 раза меньше, чем механики-водители танков Т-90) предложил (приказал) экипажам первой роты совершить еще два марша по 300-километрового с прежней скоростью. Предоставим читателю возможность самостоятельно домыслить, какой была бы реакция экипажей танков Т-80У.

Добавим к сказанному, что на последней модификации танка Т-90С завершается подготовка к внедрению в серийное производство автомата переключения передач, повышающего качество системы управления танком и снижающего трудозатраты механика-водителя.

Аналогичные мероприятия проводятся на модернизируемых танках Т-72Б.

В афишируемом качестве газотурбинного танка — малом количестве передач трансмиссии — кроме достоинств имеются и недостатки.

Поворот танков Т-80 и Т-90 с минимальным (фиксированным) радиусом на каждой передаче осуществляется за счет включения в бортовой коробке передач (БКП) передачи на одну ниже на отстающем борту, чем на забегающем. При этом обеспечивается минимальная разность частот вращения ведущих и ведомых дисков фрикционов (нулевая пробуксовка), включаемых на отстающем борту.

Поскольку при четырех передачах в БКП разрыв между передачами больше, чем при семи, очевидно, обеспечивается меньший радиус поворота танка Т-80. Поэтому, во избежание заноса, водитель будет вынужден или снижать скорость танка перед входом в поворот, или поворачивать с увеличенным радиусом за счет пробуксовки дисков фрикционов в БКП. В первом случае из-за низкой приемистости ГТД время разгона танка Т-80 после поворота будет больше, чем у танка Т-90.

Поворот с большими радиусами (наиболее распространенный режим в эксплуатации) осуществляется неполным включением передачи отстающего борта, т.е. за счет пробуксовки дисков фрикционов.

Пробуксовка будет тем значительнее, чем больше радиус поворота отличается от минимального.

Значит, при входе в поворот с одинаковыми скоростью и радиусом поворота, большим минимального для обоих танков, потери мощности на буксование фрикционов у танка Т-80 будут существенно выше, чем у танка Т-90, и это отрицательно сказывается на показателе их надежности.

Таким образом, при движении танков по узкой извилистой трассе танк Т-80 в сравнении с Т-90 теряет в скорости прохождения поворотов и проигрывает в топливной экономичности больше, чем на прямолинейном участке пути.

Теперь читателю нетрудно догадаться, почему по средней скорости движения по узкой извилистой лесной дороге в Дальневосточном регионе СССР танки Т-80У проиграли 11% (!) танкам Т-72А (см. главу 1).

В качестве конструктивного мероприятия, снижающего неблагоприятное влияние сложной извилистой трассы на топливную экономичность газотурбинного танка, специалисты немецкой фирмы MTU предлагали иметь у газотурбинного танка … одинаковое количество передач с дизельным танком [37].

Другим способом, уменьшающим негативное влияние поворотов танка Т-80 на топливную экономичность, является применение гидрообъемной передачи механизма поворота (ГОП МП) соответствующей мощности, исключающей буксование фрикционов в БКП при повороте танка. К сожалению, КПД трансмиссии с ГОП МП значительно ниже, чем механической трансмиссии, а ГОП является трудоемким и дорогостоящим агрегатом, требующим выделения в танке дополнительных объемов для размещения ГОП, масла, коммуникаций и радиаторов для отвода тепла.

Тем не менее это направление, реализованное в конструкции танка Т-80, могло бы уменьшить на 5—7% расход топлива [2, 38].

Таким образом, наряду с тем, что, по утверждению создателей танка Т-80, применение ГТД в танке «…упрощает и, конечно, удешевляет дорогостоящий узел танка (трансмиссию. — Прим. авторов)», оно также привносит недостатки, с которыми приходится мириться или их устранять, теряя заявленное преимущество, а то и приобретая его противоположность при применении ГОП МП.

Использование ГОП МП в танке требует обязательного учета многих факторов, в том числе: удельной мощности танка, применяемого скоростного диапазона, наиболее характерных дорожных условий при эксплуатации танка, установочной мощности ГОП МП, квалификации водителя и др.

Применение ГОП МП наиболее эффективно сказывается при движении танка по дорогам с твердым покрытием. Большое влияние на выбор ГОП МП для установки в танк оказывают характеристики дорожного грунта и удельной мощности танка.

По экспериментальным данным [39], при удельной мощности до 27 л.с./т средняя скорость движения танка со ступенчатым МП при движении по деформируемому грунту (а где еще двигаться танку?) находится на одинаковом уровне со средней скоростью танка, оснащенного ГОП МП.

В связи с этим, по нашему мнению, нецелесообразно использование ГОП МП в танках, эксплуатирующихся в войсках с сегодняшним уровнем средних скоростей (см. главу 1 «Скорость танка»).

Конечно, установка ГОП МП положительно сказывается на удобстве управления и точности следования задаваемой траектории движения. Но при этом заказчик должен определиться, сколько он готов дополнительно заплатить за комфорт при управлении танка, не получая при этом адекватного улучшения характеристик подвижности танка.

Источник:
http://arsenal-info.ru/b/book/1344116410/8